skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jara-Almonte, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Magnetic reconnection in partially ionized plasmas is a ubiquitous and important phenomenon in both laboratory and astrophysical systems. Here, simulations of partially ionized magnetic reconnection with well-matched initial conditions are performed using both multi-fluid and fully-kinetic approaches. Despite similar initial conditions, the time-dependent evolution differs between the two models. In multi-fluid models, the reconnection rate locally obeys either a decoupled Sweet–Parker scaling, where neutrals are unimportant, or a fully coupled Sweet–Parker scaling, where neutrals and ions are strongly coupled, depending on the resistivity. In contrast, kinetic models show a faster reconnection rate that is proportional to the fully-coupled, bulk Alfvén speed, vA⋆. These differences are interpreted as the result of operating in different collisional regimes. Multi-fluid simulations are found to maintain νniL/vA⋆≳1, where νni is the neutral–ion collision frequency and L is the time-dependent current sheet half-length. This strongly couples neutrals to the reconnection outflow, while kinetic simulations evolve to allow νniL/vA⋆<1, decoupling neutrals from the reconnection outflow. Differences in the way reconnection is triggered may explain these discrepancies. 
    more » « less